Simon and Neva make a 3D projection of a Hypertetrahedron – one of the regular solids in 4D – using straws. Simon looks up the formula for the center of the tetrahedron (radius of its circumscribed sphere) to measure the sides of the inside straws. To cut the exact length of the inside straws, he constructs a segment with the length of square root of six, divides it by 4 and multiplies the result by the original length of the straws.
Please also see our next and even cooler project – a 3D projection of a Hyperoctahedron:
The Hyperoctahedron came out to look very nice and four-dimensional. “It lands on the floor very nicely”, Simon says throwing it around – it is a very stable shape, made up of 16 tetrahedrons. Simon had to work out the centre of the triangle for this projection, which is easy to do for equilateral triangles.
The making of the Hyperoctahedron:
Measuring the center of the equilateral triangle:
Cutting the straws so that their length equals the distance between the vertex and the centre of the triangle:
The Hyperoctahedron is ready:
“I’m holding a four-dimensional shape in my hands!”