Simon has started building neural networks in Python! For the moment, he has succeeded in making two working neural nets (a Perceptron and a Feed Forward neural net). He used the sigmoid activation function for both. The code partially derived from Siraj Raval’s “The Math of Intelligence” tutorials.
The FF was tougher to build:
Simon’s nets run locally (on our home pc), but he will need more computational power for the more complex future projects, so he signed up to this wonderful online resource called FloydHub! FloydHub is sort of a heroku for deep learning, a Platform-as-a-Service for training and deploying deep learning models in the cloud. It uses Amazon, which Simon could, too, but it would have been a lot more expensive and tedious work to set up.
Simon’s next step will be another supervised learning project, a Recurrent Neural Net that will generate text. He has already started building it and fed it one book to read! In this video he explains how character-based text generators work: